A multi-resolution SPH method for fluid-structure interactions

نویسندگان

چکیده

In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with resolutions fluid structure. To ensure momentum conservation at coupling, position-based Verlet integration scheme introduced. Furthermore, time-averaged velocity acceleration of solid particles are introduced to enhance force matching in equations. A set numerical examples including several bio-mechanical problems considered demonstrate efficiency, accuracy robustness method. An open-source code all also provided.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Air-Fluid Interactions for SPH

Computing the forces acting from a surrounding air phase onto an SPH free-surface fluid is challenging. For full multiphase simulations the computational overhead is significant and stability issues due to the high density ratio may arise. In contrast, the air-fluid interactions can be approximated efficiently by employing a drag equation. Here, for plausible effects, the parameterization is im...

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

A multi-phase SPH method for macroscopic and mesoscopic flows

A multi-phase smoothed particle hydrodynamics (SPH) method for both macroscopic and mesoscopic flows is proposed. Since the particle-averaged spatial derivative approximations are derived from a particle smoothing function in which the neighboring particles only contribute to the specific volume, while maintaining mass conservation, the new method handles density discontinuities across phase in...

متن کامل

An incompressible multi-phase SPH method

An incompressible multi-phase SPH method is proposed. In this method, a fractional time-step method is introduced to enforce both the zero-density-variation condition and the velocity-divergence-free condition at each full time step. To obtain sharp density and viscosity discontinuities in an incompressible multi-phase flow a new multi-phase projection formulation, in which the discretized grad...

متن کامل

An immersed-shell method for modelling fluid-structure interactions.

The paper presents a novel method for numerically modelling fluid-structure interactions. The method consists of solving the fluid-dynamics equations on an extended domain, where the computational mesh covers both fluid and solid structures. The fluid and solid velocities are relaxed to one another through a penalty force. The latter acts on a thin shell surrounding the solid structures. Additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2020.110028